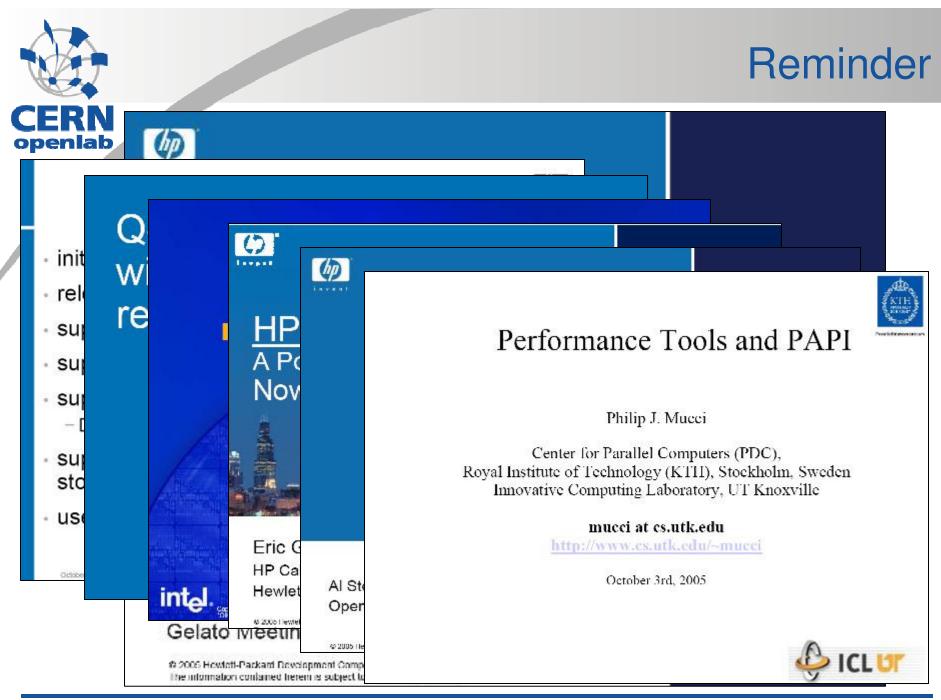
Practical experience with Performance Monitors on Xeon and Itanium


Monthly Technical Review Meeting 24th October

Ryszard Jurga

Agenda

- Introduction to the CERN computing
- Introduction to Performance Monitoring
- Performance Monitors
 - events
 - countes
 - interfaces
 - tools
 - some results
- Profiling and some results
- Conclusions

Computing@CERN

High Throughput Computing (HTC)

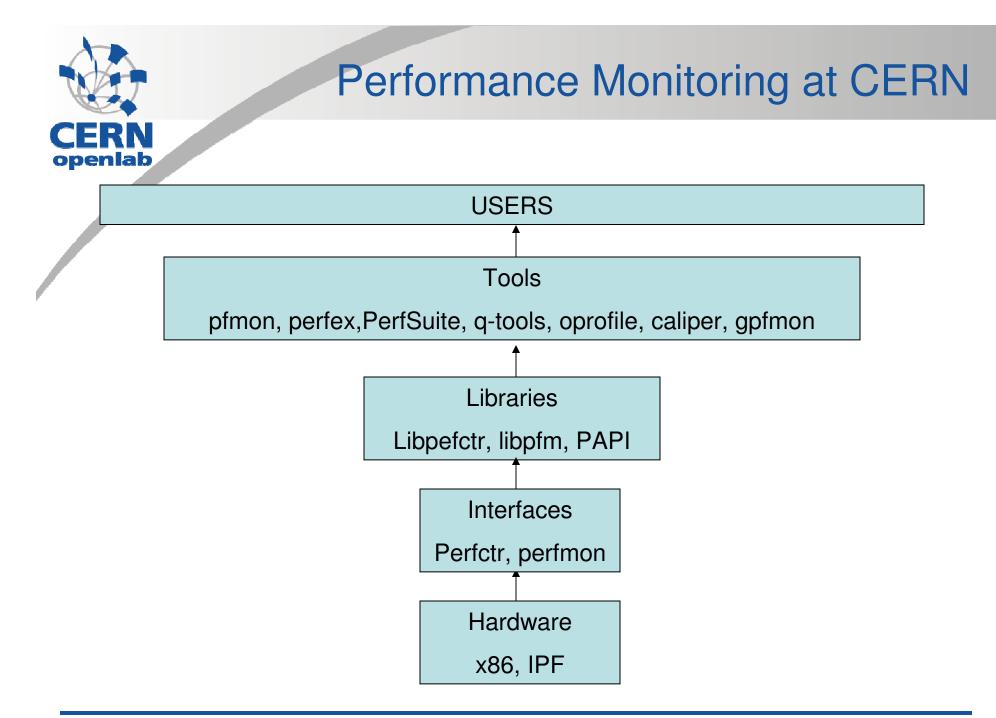
- Ixbatch
- x86 (Xeon), 32bit →64bit
- High Performance Computing
 - opencluster
 - Computational Fluid Dynamics (CFD)
 - Itanium, 64bit
- multi processor/core boxes
- many simultaneously running jobs
 - interaction, interference
 - CPU/memory resources sharing

The need of monitoring

- The Large Hadron Collider computing requirements
 - 1000s per 1 full event (on CPU with 1000 SpecINT2000)
 - up to ~70k-100k CPUs
- Optimization
 - performance measurements
 - bottleneck identification
 - bottleneck analysis
 - reimplementation and redesign

"Bottlenecks occur in surprising places, so don't try to second guess and put in a speed hack until you have proven that's where the bottleneck is." Rob Pike

Principal Google Engineer


Performance Monitoring

- Goal
 - analysis of the behavior of a program while running
 - e.g. execution time, time spent per function, call graph
- Software Instrumentation
 - code snippets to collect required data
 - source
 - manual,
 - compiler assisted (gcc -pg, gprof)
 - binary
 - offline binary translation (ATOM)
 - online adds the code dynamically while running (PIN, DynInst)
 - high overhead
 - portable on the same platform family
 - half answer: show problems, where cycles are spent
 - time domain

Performance Monitoring HW

- Hardware approach
 - more detailed answer: show problems and their sources
 - special on-chip hardware of modern CPU: Performance Monitors
 - different domains: cpu cycles=time, instructions, cache misses etc.
 - less overhead
 - less portability
- Hybrid solution
 - both: instrumentation and hardware solutions
 - e.g. The Tuning and Analysis Utilities (TAU)

Performance Monitor - events Ideas number of events count all berformance of 171 145 application events of executed instructio , cache misses 44 flat inforr al number of cycles ar ssor is halted Montecito ltanium2 Xeon

 break down on Itanium – e.g. you can go from stalls into their sources

Counters

- 40bit (Xeon), 48bit(Itanium2, Montecito)
- 18 (Xeon), 4 (Itanium2), 12 (Montecito)
 - not enough
 - 4 groups of counters (Xeon)
 - up to 6 counters per one group
 - Solve the second sec
 - counters are assigned to specific events
 - at-retirement events require up to 2 counters (Xeon and tagging)
 - counters are freely available (IPF)
 - certain events can not be measured together
- other features:
 - enable the cascading of paired counters (Xeon)

Performance Monitors – other features

- capture event information and instruction pointer – useful in profiling
 - Precise Event-Based Sampling (PEBS) on Xeon
 - Event Address Registers (EARs) on IPF
- tracing branches determine the path taken to reach a particular code location – useful in a call graph approach
 - Branch Trace Store (BTS) Xeon
 - Branch Trace Buffer (BTB) IPF
- Instruction Address Range Matching (IPF)
 - counting within the IP range

Our requirements

- we look for universal and portable interface and tools
- support for
 - x86 Ixbatch
 - IPF opencluster
- kernel 2.4 & 2.6
- user/kernel domain
- per thread/system-wide context
- multiplexing
- counting, sampling, profiling
- working with sources/binaries

Interfaces - perfctr

- perfctr
 - Intel x86, AMD K7/K8, Cyrix , VIA C3, WinChip, PowerPC,
 - × no IPF
 - Lesser GPL
 - libperfctr.so library
 - kernel 2.4 & 2.6
 - no multiplexing
 - no documentation (apart from comments in source files)

Interfaces - perfmon

- perfmon
 - IPF, Pentium M/P6, Pentium 4/Xeon (32&64bit), Opteron 64bit, MIPS 5k/20k, Power5
 - GPL, MIT License
 - libpfm.so library
 - kernel 2.6
 - no kernel 2.4 support
 - ✓ multiplexing
 - Ibrary supports mainly for IPF
 - ✓ recently updated library support e.g. Xeon
 - good documentation

Cross Platform Interface

- Performance Application Programming Interface (PAPI)
 - x86, IPF
 - perfctr & perfmon
 - Linux/Windows
 - all counter operations
 - multiplexing
 - user/kernel domain
 - counters are aggregated for the current process
 * not for any others in the system

Tools - pfmon

- http://perfmon2.sourceforge.net
- basic counting
- ✓ sampling
- per thread/system-wide mode
- user/kernel domain
- × 2.6 kernel
 - ✓ SLC4 is coming
- only for IPF (perfmon)
 - more processors supported in a new version
- no multiplexing
 - multiplexing support already available
 - not in a sampling mode
- no profiling
 - profiling support in a new version
 - --smpl-module=inst-hist, --smpl-show-function
 - --resolve-addresses (shared libraries)
- number of function calls (IPF only)
- ✓ wrapping script *i2prof.pl* lots of metrics

Tools - PerfSuite

- <u>http://perfsuite.ncsa.uiuc.edu</u> (psrun, psprocess ...)
 - ✓ basic counting
 - ✓ sampling
 - no system-wide mode
 - ✓ user/kernel domain
 - ✓ 2.4 & 2.6 kernel
 - X86 & IPF (perfctr, perfmon, PAPI)
 - more processors supported in a new version
 - profiling support
 - flat profile neither number of function calls nor call graph

Tools - Caliper

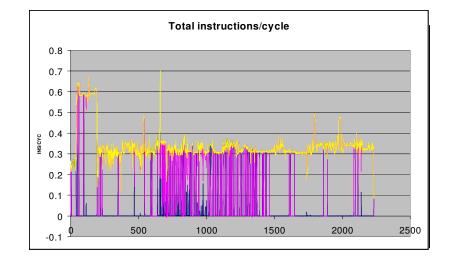
- http://hp.com/go/caliper
 - counting/profiling
 - ✓ shared libraries
 - per process/system wide mode
 - ✓ overall value for all CPU
 - no break down into multi core/processors
 - no multiplexing
 - ✓ updated in new release
 - flat profile/number of function calls/call graph
 - gives guidance about improving the performance
 - only IPF

Tools – oprofile,q-tools

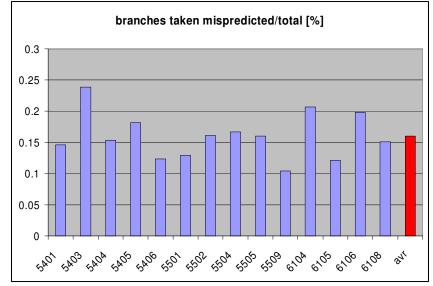
- oprofile.sourceforge.net
 - ✓ x86 & IPF, ...
 - system-wide profiler
 shared libraries
 - kernel 2.4 & 2.6
 - requires root access
 - up to all available counters
 - no multiplexing
 - output
 - ✓ per library, per function, call graph
- http://www.hpl.hp.com/research/linux/q-tools
 - system-wide profiling (q-syscollect)
 - one/multi thread mode (qprof)
 - shared libraries
 - one hardware event
 - ✓ flat profile or call graph
 - > only IPF

Experience with Xeon

there is no tool which meets our requirements in the domain of system-wide monitoring (counting, sampling)

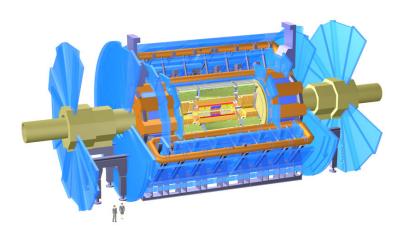

- we decided to develop our own tool
 - gpfmon
 - · uses perfctr interface and library
 - user/kernel domain
 - per single or total CPU
 - ✓ enables multiplexing
 - 4 even sets
 - cpu cycles, instructions completed, branches taken predicted and mispredicted, L2 load and store missed, FP, scalar, load and stores instructions
 - we miss average 2% samples, apart from L2 store missed 92%

	СҮС	тот	BR_TP	BR_TM	L2LM	L2SM
-	сус	тот	FP	LD	L2LM	L2SM
\Box	сус	тот	apa			L2SM
			SDS			
┕►	CYC	ТОТ	LDST	BR	L2LM	L2SM



gpfmon sample results

- Geant4 Atlas simulation
 - IPC 0.34
 - FP 18%
 - LD+ST 63% (7% LD caused L2 cache miss)
 - Branches 10%, taken predicted/mispredicted=36


- Lxbatch (Averages)
 - IPC − 0.5
 - FP -14%
 - LD+ST 52%
 - Branches 10%, taken predicted/mispredicted=56

Profiling

- no access to sources of profiled applications
- from a single executable up to huge applications with more than 400 shared libs and profiling time up to 12 hours
 - Geant4 libraries and benchmarks (Xeon, Itanium)
 - Atlas and LHCb simulations
 - Atlas reconstruction

Profiling

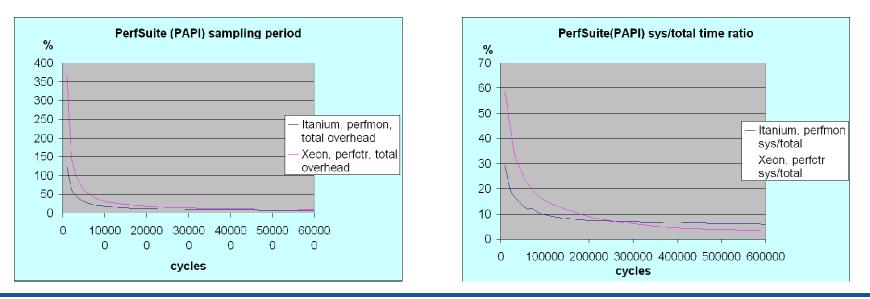
- we use PerfSuite
 - Does not work with python scripts running from command line
 - unpredictable behevior on AFS (Andrew File System)
 - * a problem with resoving function names
 - unknown functions with static libraries
 - **x** a huge problem with shared libraries
 - in order to monitor, PerfSuite has to know all of them in advance
 - » LD_PRELOAD variable a big challange how to select interesting libraries from 400+ without causing dependence error?
 - » use oprofile to have another look

PerfSuite & LD_PRELOAD

Profile Information	
Class : PAPI Event : PAPI_TOT_CYC (Total cycles) Period : 50000 Samples : 719 Domain : user Run Time : 17.52 (seconds) Min Self % : (all) Module Summary	-
Samples Self % Total % Module 376 52.29% 52.29% /usr/bin/python 178 24.76% 77.05% /lib/ld-2.3.2.so 159 22.11% 99.17% /lib/tls/libc-2.3.2.so 4 0.56% 99.72% /lib/tls/libpthread-0.60.so 1 0.14% 99.86% /lib/libdl-2.3.2.so 1 0.14% 100.00% /lib/libutil-2.3.2.so Function Summary	_
Samples Self % Total % Function 376 52.29% 52.29% ?? 110 15.30% 67.59% do_lookup_versioned 40 5.56% 73.16% _int_malloc 31 4.31% 77.47% stremp 22 3.06% 80.53% _d_lookup_versioned_symbol 19 2.64% 83.17% memcpy 16 2.23% 85.40% _libc_malloc 11 1.53% 86.93% free 7 0.97% 87.90% int_free 7 0.97% 88.87% strien 6 0.83% 90.54% do_lookup 5 0.70% 91.24% malloc_consolidate 5 0.70% 91.93% _mempcpy 4 0.56% 92.49% _j686.get_pc_thunk.bx 3 0.42% 93.74% int realloc	-
2 0.28% 94.02% L969 2 0.28% 94.30% realloc 2 0.28% 94.30% realloc 2 0.28% 94.58% mallopt	

Profile Informati	on
 Class	: : PAPI
Event	: PAPI_TOT_CYC (Total cycles)
Period	: 50000
Samples	:721514
Domain	: user
Run Time	: 17.60 (seconds)
Min Self %	: (all)
Module Summa	ry
Samples Self	% Total % Module
	2% 64.52% /afs/cern.ch/user/o/oplaatl3/testdll/libhello2.so.1
	0% 99.92% /afs/cern.ch/user/o/oplaatl3/testdll/libhello1.so.1
	s 99.98% /usr/bin/python
	5 100.00% /lib/tls/libc-2.3.2.so
26 0.00%	100.00% /lib/ld-2.3.2.so
4 0.00%	100.00% /lib/tis/libpthread-0.60.so
Function Summ	
	-
Samples Self	% Total % Function
255433 35	5.40% 35.40% hello(int*)
254920 3	5.33% 70.73% sum(int*)
210595 2	9.19% 99.92% count(int*, int)
392 0.05%	99.98% ??
36 0.00%	99.98% _int_malloc
22 0.00%	99.98% memopy
13 0.00%	99.99%libc_malloc
11 0.00%	99.99% free
10 0.00%	99.99% do_lookup_versioned
7 0.00%	99.99% strcmp
6 0.00%	99.99%open_nocancel
5 0.00%	99.99% _int_free
4 0.00%	99.99% memset
	99.99% malloc consolidate

PerfSuite – Atlas simulation profiling


	Samples	Self % T	otal % F	unction
	3072804	16 7.8	82% 7	.82% ??
	7320624	1.86%	9.68%	G4Transportation::AlongStepGetPhysicalInteractionLength()
	6689448	1.70%	11.38%	G4VoxelNavigation::ComputeStep()
/	5873290	1.49%	12.87%	G4Navigator::ComputeStep()
ľ	5490913	1.40%	14.27%	G4PolyconeSide::Intersect()
	5278498	1.34%	15.61%	G4SteppingManager::Stepping()
	5050076	1.28%	16.90%	G4PropagatorInField::ComputeStep()
	4919562	1.25%	18.15%	G4Navigator::LocateGlobalPointAndSetup()
	4503773	1.15%	19.30%	G4PolyconeSide::DistanceAway()
	4366559	1.11%	20.41%	G4IntersectingCone::LineHitsCone1()
	4295632	1.09%	21.50%	G4VoxelNavigation::LocateNextVoxel()
	4199824	1.07%	22.57%	G4SteppingManager::DefinePhysicalStepLength()
	4033883	1.03%	23.59%	G4MultipleScattering52::GetContinuousStepLimit()
	3938509	1.00%	24.60%	G4SteppingManager::InvokePSDIP()
	3912491	1.00%	25.59%	G4MultipleScattering52::PostStepDolt()
	3766114	0.96%	26.55%	G4ClassicalRK4::DumbStepper()
	3722683	0.95%	27.50%	G4SteppingManager::InvokeAlongStepDoltProcs()
	3620741	0.92%	28.42%	_int_malloc
	3620692	0.92%	29.34%	G4Navigator::LocateGlobalPointAndUpdateTouchableHandle()
	3604007	0.92%	30.25%	LArWheelCalculator::DistanceToTheNeutralFibre()
	3598039	0.92%	31.17%	vfprintf
	3581444	0.91%	32.08%	G4UniversalFluctuation::SampleFluctuations()
	3259393	0.83%	32.91%	G4ElectroNuclearCrossSection::GetCrossSection()
	3127408	0.80%	33.71%	G4PolyconeSide::PointOnCone()
	2872853	0.73%	34.44%	G4NavigationLevelRep::G4NavigationLevelRep()
	2833732	0.72%	35.16%	G4Transportation::PostStepDolt()
	2737712	0.70%	35.85%	G4ChordFinder::FindNextChord()
	2733244	0.70%	36.55%	G4Tubs::DistanceToIn()
	2721568	0.69%	37.24%	G4VEnergyLossProcess::AlongStepDolt()
	2654097	0.68%	37.92%	G4MagErrorStepper::Stepper()
	2610649	0.66%	38.58%	G4ParticleChangeForTransport::UpdateStepForAlongStep()

2550219	0.65%	39.23%	G4SandiaTable::GetSandiaCofPerAtom()
2540628	0.65%	39.88%	G4PhotoNuclearCrossSection::GetCrossSection()
2413526	0.61%	40.49%	G4Transportation::AlongStepDolt()
2407946	0.61%	41.10%	CLHEP::HepJamesRandom::flat()
2396557	0.61%	41.71%	G4PolyPhiFace::Intersect()
2390632	0.61%	42.32%	G4HadronCrossSections::CalcScatteringCrossSections()
2343439	0.60%	42.92%	G4MagInt_Driver::QuickAdvance()
2277101	0.58%	43.50%	CLHEP::HepRotation::rotateAxes()
2244256	0.57%	44.07%	G4PhysicsVector::GetValue()
2242211	0.57%	44.64%	G4SteppingManager::SetInitialStep()
2228671	0.57%	45.20%	G4Tubs::Inside()
2171964	0.55%	45.76%	G4NormalNavigation::ComputeStep()
2132567	0.54%	46.30%	G4VEmProcess::GetMeanFreePath()
2083184	0.53%	46.83%	G4VoxelNavigation::LevelLocate()
2067235	0.53%	47.35%	G4VoxelNavigation::ComputeVoxelSafety()
1978418	0.50%	47.86%	G4VoxelNavigation::VoxelLocate()
1944091	0.49%	48.35%	G4PropagatorInField::IntersectChord()
1892005	0.48%	48.83%	G4eBremsstrahlungModel::SampleSecondaries()
1889364	0.48%	49.31%	G4PolyconeSide::Inside()
1875195	0.48%	49.79%	G4PolyconeSide::Distance()
1853968	0.47%	50.26%	G4AffineTransform::G4AffineTransform()
1842997	0.47%	50.73%	G4EnclosingCylinder::MustBeOutside()
1841307	0.47%	51.20%	G4StepPoint::operator=()
1805522	0.46%	51.66%	G4ParticleChange::CheckIt()
1793612	0.46%	52.12%	G4VCSGfaceted::DistanceToOut()
1772012	0.45%	52.57%	G4TrackingManager::ProcessOneTrack()
1731569	0.44%	53.01%	G4HadronicProcess::GetMeanFreePath()
1631892	0.42%	53.42%	G4MagInt_Driver::AccurateAdvance()
1612075	0.41%	53.83%	G4ChordFinder::AdvanceChordLimited()
1546908			std::vector <g4vtrajectorypoint*,< td=""></g4vtrajectorypoint*,<>
std::allocator<	<g4vtra< td=""><td>ijectoryPc</td><td><pre>vint*> >::_M_insert_aux()</pre></td></g4vtra<>	ijectoryPc	<pre>vint*> >::_M_insert_aux()</pre>
1504737		54.61%	
			s::PostStepGetPhysicalInteractionLength()
1471951			G4VEnergyLossProcess::GetMeanFreePath()
1456046			_int_free
1449124	0.37%	55.72%	G4VCSGfaceted::DistanceToIn()

Profiling challenges

- Profiling overhead on Xeon and Itanium2
 - bigger on Xeon with perfctr than on Itanium2 with perfmon
 - for small sampling periods more time is spent in a kernel than in a user space – "Heisenberg Effect"

Our Conclusions

- PMU and already available tools for IPF let you explore CPU resources in more details than on the x86 family
- both perfmon2 and pfmon include support for more and more processors and more useful features (event multiplexing, profiling) which makes them more interesting in our applications

Our Conclusions

- tools are a step behind hardware and do not take full advantage of performance units, e.g. BTS on Xeon
- one scalable and portable tool on different platforms would be an ideal solution
 - from 'hello world program' up to a huge framework
 - shared and dynamic loaded libraries
 - resolving function names

- simple profiling is not always a full answer, we need something more
 - number of function calls
 - call graph
 - without using hardware support we suffer from a big overhead (e.g. on Xeon PIN ~800%, ATOM 6300% with one of Geant4's examples)

after the Gelato conference...

- We contribute to perfmon2 & pfmon by:
 - improving the resolution of function names from shared libraries
 - testing on x86 (Xeon) as well as on IPF
- Number of function calls
 - Dynamic instrumentation
 - PIN & ATOM
 - triggers (x86) and check-point options in pfmon
- preparing to move to the 64bit performance monitoring

Questions and answers

